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The evolution of a finite-amplitude three-dimensional localized disturbance embedded 
in external shear flows is addressed. Using the fluid impulse integral as a characteristic 
of such a disturbance, the Euler vorticity equation is integrated analytically, and a 
system of linear equations describing the temporal evolution of the three components 
of the fluid impulse is obtained. Analysis of this system of equations shows that inviscid 
plane parallel flows as well as high Reynolds number two-dimensional boundary layers 
are always unstable to small localized disturbances, a typical dimension of which is 
much smaller than a dimensional length scale corresponding to an O( 1) change of the 
external velocity. Since the integral character of the fluid impulse is insensitive to the 
details of the flow, universal properties are obtained. The analysis predicts that the 
growing vortex disturbance will be inclined at 45" to the external flow direction, in a 
plane normal to the transverse axis. This prediction agrees with previous experimental 
observations concerning the growth of hairpin vortices in laminar and turbulent 
boundary layers. In order to demonstrate the potential of this approach, it is applied 
to Taylor-Couette flow, which has additional dynamical effects owing to rotation. 
Accordingly, a new instability criterion associated with three-dimensional localized 
disturbances is found. The validity of this criterion is supported by our experimental 
results. 

1. Introduction 
The purpose of the present work is to derive a general model which is capable of 

characterizing the evolution of three-dimensional localized disturbances in shear flows. 
The original motivation for this investigation was to explain the growth of hairpin 
vortices in turbulent boundary layers. However, as will be shown, this formalism can 
be applied to several kinds of shear flows. In fact, when applied to the Taylor-Couette 
flow, a new instability criterion associated with finite-amplitude three-dimensional 
localized disturbances emerged. As predicted by this criterion and supported by our 
experimental results, the flow is unstable to such disturbances over a range of 
parameters, while the flow is expected to be stable according to Landau & Lifshitz 
(1959). 

The assumptions used in the model are based on geometrical characteristics of the 
hairpin vortices found in a series of experiments which followed the pioneering work 
of Kline et al. (1967). They were the first to observe the well-organized streaky 
structure in the near-wall region of a turbulent boundary layer. A brief summary of 
papers relevant to this subject can be found in the article by Head & Bandyopadhyay 
(1981). By using a sophisticated flow visualization procedure they were able to 
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conclude that at Reynolds numbers, Re, > 200, the layer appears to consist very 
largely of elongated hairpin vortices, originating in the wall region and extending 
throughout a substantial part of the boundary layer or beyond it. These vortices were 
found to have a characteristic inclination of 45” and remain identifiable even at high 
Reynolds numbers of the order of Re, x 10000. At low Reynolds numbers, Re, < 800, 
the hairpin vortices are much less elongated and are better described as horseshoe 
vortices or vortex loops. Hairpin vortices were artificially generated in a laminar 
boundary layer by Acarlar & Smith (1987a, b). Comparison of their results with the 
vortical structures observed in turbulent boundary layers show striking similarities 
with regard to the details of the vortical structures which consist of a head and counter- 
rotating legs inclined at 45” to the main flow direction. Using numerical simulations, 
Moin & Kim (1985) reproduced all the features of hairpin vortices in turbulent channel 
flow. Recently, Hagen & Kurosaka (1993) studied the interiors of these structures and 
discovered the existence of cross-flow transport inside the cores of the hairpin legs, 
having a corewise velocity of 0.75 of the free stream velocity. In fact, this transport can 
explain the mechanism of turbulent mixing in boundary layers. 

The evolution of localized disturbances cannot be explained solely by a two- 
dimensional instability mechanism. This was recognized by Landahl (1979, who 
pointed out that the non-dispersive advective part of an initial inviscid three- 
dimensional disturbance, which travels at the local mean velocity of the fluid, has a 
very different character than the corresponding part of a two-dimensional disturbance. 
He noted that the solution for any three-dimensional disturbance contains a non- 
vanishing component in the vertical (normal to the wall) direction, which he termed the 
‘liftup’ effect. If there is a mean shear, the integrated effect of this ‘liftup’ mechanism 
creates a streamwise disturbance velocity which does not disappear for long times. 
Further studies, using theoretical models, direct numerical simulations and analysis of 
the linearized Navier-Stokes equations, by Russell & Landahl (1984), Henningson 
(1988), Breuer & Haritonidis (1990), Breuer & Landahl(1990), Gustavsson (1991) and 
Henningson, Lundbladh & Johansson (1 993), have shown that three-dimensionality 
plays a key role and allows for algebraic growth of the normal vorticity through the 
linear liftup mechanism. This growth primarily generates elongated structures in the 
streamwise direction (much longer than the boundary layer thickness), forming an 
inclined shear layer which is tilted, stretched and intensified by the mean shear as it 
travels downstream. 

Orszag & Patera (1983) showed that, alone, neither the tilting of the mean vorticity 
by the perturbation’s velocity field nor the advection and stretching of the perturbation 
vorticity by the mean flow, can ever lead to exponential growth of the initial 
disturbance. In their review article, Bayly, Orszag & Herbert (1988) argued that the 
three-dimensional instability results from a delicate balance between the stretching of 
old perturbation vorticity and the perpetual generation of new vorticity by the tilting 
of the basic flow vorticity. This argument is supported by the study of the elliptical 
instability (Bayly 1986) and by the study of the transient growth of optimal 
perturbations in constant-shear flows (Farrell & Ioannou 1993). 

The present approach follows some of the ideas described above. However, it focuses 
on the evolution of localized disturbances for which all dimensions are of the same 
order and much smaller than the boundary layer thickness. In order to account for the 
integrated ‘liftup’ effect we shall follow the evolution in time of the fluid impulse 
integral, P, defined as 

P = -  xxW(X)dV, (1) 2 ‘I 
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where the bold type indicates vector character, x is the position vector, o is the 
vorticity vector, d V is a volume element and the integral is taken over the whole fluid. 

The attraction of the fluid impulse is that it is an invariant of self-induced motion 
in unbounded three-dimensional flow (Batchelor 1967). Consequently, the evolution of 
the fluid impulse for a localized disturbance is characterized by a linear equation, even 
though the motion of the vortical localized disturbance is governed by strong nonlinear 
effects. The integral character of the fluid impulse prevents us from knowing the details 
of the evolution in time and redistribution of the vorticity enclosed within the disturbed 
vortical region. However, this insensitivity to the details of the flow leads us to expect 
some universal properties. The fluid impulse is also a very powerful tool if one is 
interested in the asymptotic behaviour of the velocity and pressure in the far field (Rott 
& Cantwell 1993), and in the evolution of the confined vortical region as a whole. In 
previous works Roberts (1972) and then Grigoriev, Levinski & Yanenko (1982) used 
the fluid impulse to describe the time evolution of interacting vortices embedded in a 
potential flow. 

In what follows we shall explain the space and time evolution of such localized 
vortices surrounded by external shear flows. In accordance with the above-mentioned 
experimental observations, we assume that the effect of the Reynolds number is 
secondary and the only role of the wall is to generate the initial disturbance, the 
dimensions of which are much smaller than a typical scale representing the velocity 
gradient of the external flow. Consequently we shall follow the evolution of the fluid 
impulse in an unbounded inviscid flow and take advantage of its properties. 

2. Analysis 

given by 
The three-dimensional vorticity equation for an incompressible and inviscid flow is 

(2) 

where the total velocity vector U ,  and the total vorticity vector 51, are related by 
51, = V x U,. We consider these vectors as being the sum of two contributions: 
the external shear field (or 'background field') in which 51 = V x U, and a finite- 
amplitude disturbed field in which o = V x U. Thus, the total velocity and vorticity 
vectors can be written as 

-+(U,.V)n,-(a,.v) 351, u, = 0, 
at 

U , =  U+U and 51,=51+o. (3) 

When (3) is substituted into (2) and the undisturbed equation for the external flow is 
subtracted we obtain 

am -+ ( U .  0) 0- (0. V) u+ (U' V) 51- (51. 0) U + (U' V) 0- (0. V) u = 0, 
at 

(4) 

for which the undisturbed external flow field is assumed to be a known solution of (2). 
The disturbed vorticity at the initial time to, is given by 

0(x, t = to) = o0(x), (5)  

and it is assumed that o, is confined to a very small region, a typical size of which is 
6 g A ,  where d is a dimensional length scale corresponding to an O(1) change of the 
external velocity. 
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In a previous paper, Aref & Flinchem (1984) used the fraction 6 / A  -4 1 as a small 
parameter in order to estimate the relative magnitudes of the terms describing the 
interaction between the vortex disturbance and the external flow in (4). In their analysis 
the vortex disturbance was taken as a quasi-two-dimensional slender tube of diameter 
6, so that variations along the tube were much smaller than those across it. By 
comparing orders, they showed that the second term in (4) is the most important one. 
This term describes the advection of the vortex tube by the background velocity field. 
Physically, the dominance of this term is attributed to the fact that a typical length scale 
along the tube is relatively long, of 0 ( A ) ,  and consequently the corresponding shear of 
the external flow becomes significant. 

In the case described in this paper, the disturbed vorticity is assumed to be confined 
to a small region, of length O(6) in all directions. Therefore, the shear across any 
direction of the disturbed region is at least 0(6/d) smaller than the corresponding 
shear along the tube in the case described above. Since the advection of the small 
disturbed region as a whole is not of interest, we use a Galilean frame, moving with the 
disturbance, instead of the laboratory frame. Accordingly, the origin of the coordinate 
system is redefined to be some point within the initially disturbed region so that 
U(0) = 0. 

Taking advantage of the smallness of the disturbed region, the external velocity and 
vorticity fields around the origin are approximated by Taylor series expansions. Using 
the magnitude of the background shear 101 and the length scale A as the appropriate 
scales representing the external flow, the Taylor series expansions are given by 

and (7) 

where the leading term in (6) is O(lQ(0)lIxl) and Ixl/d -4 1. 
The magnitude of the fluid impulse integral IPI and the length 6 are chosen as 

representative scales of the disturbed field. Accordingly, typical magnitudes of the 
disturbed vorticity and velocity are 101 - IPl/s" and IuI - lPl/S3, respectively, while the 
magnitude of the external velocity within and in the vicinity of the disturbed region is 
IUI - IQP. 

Using these scales, the magnitudes of the terms in (4) describing the interaction 
between the vortex disturbance and the external flow are estimated to be 

and (9) 

Since the fourth term in (4) is 0 ( S / A )  smaller than the rest, it will be neglected. Thus, 
to leading order the vorticity equation is reduced to 

(10) 

The simplified vorticity equation (10) and the simplified expressions for the external 
velocity and vorticity fields given by (6) and (7) are a direct consequence of the 

a 0  -+ ( U .  V) 0- (0. V) u- (a. V) u + (U'V) 0- (0. V) u = 0. 
at 
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assumption that & / A  < 1. From here onwards we shall regard this ratio as being 
infinitesimally small so that the initially embedded vorticity region is in fact surrounded 
by an infinite field having a constant-velocity shear. 

In order to study the development of the initial localized vorticity disturbance, we 
follow the time evolution of the fluid impulse, i.e. 

where the time derivative of o(x, t) is determined from (10). It should be noted that for 
a bounded vorticity field, the resultant fluid impulse is invariant under a Galilean 
transformation. 

Since the time evolution of the fluid impulse is an integral over the whole volume, 
we must first verify that most of the contribution to this integral comes from the 
localized disturbed region; otherwise, the use of Taylor series expansions and the 
neglect of the fourth term in (4) are not justified. According to (lo), the vorticity 
generated during a typical time scale of O(l/lal), is of the order of 1 0 ~ 1 .  This vorticity, 
except for the part generated via the fourth term in (lo), is confined to the disturbed 
region. Therefore, its contribution to the evolution of the fluid impulse (1 1) is of the 
order of [PI - O(lo,ls") - O(l&l), where the subscript 0 indicates the evaluation of all 
quantities at time to. 

The only term which might generate vorticity away from the localized region is the 
fourth term in (lo), which describes the stretching of the external vorticity by the 
velocity field induced by the disturbance. The velocity field induced by the localized 
vortex disturbance at locations far from it is given by 

where JxI-tco (Batchelor 1967). Substituting (1) into (12) with 1x1 %- 6 and t = to we 
obtain 

Thus, although the far-field vorticity generated by the self-induced velocity field (the 
fourth term in (10)) is very small, of O(lw,ls"/lx14), its integrated contribution over 
some volume, including the far field (1x1 % 6) and excluding the disturbed region, is of 
the same order as that of the near field, i.e. O(IP,l). Furthermore, since the vorticity 
diminishes in magnitude as I X I - ~ ,  the integral (11) is not absolutely convergent and 
depends on how the integral is taken. 

In order to overcome this difficulty we subdivide the velocity and vorticity fields into 
two parts as follows: 

so that w I J I  = V x ur,Ir. Therefore, for each part we require that 

o = w'+w" and u = ur+urI, (14) 

v."I= v.wI'= 0. (15) 

Consequently, the disturbed velocity fields generated by the vorticity fields or,'' are 
given by 

d V'. 
1 

4x 
(x - x') x wIJI(x',  t) I Jx - x'13 

uIJI(x, t) = -- 
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The first part, indicated by the superscript Z, is regarded by us as the one associated 
with the concentrated vorticity confined within and in the vicinity of the initially 
disturbed region, whereas the second part, indicated by the superscript ZI, is associated 
with the far-field vorticity generated via the fourth term of (10). Accordingly, we set the 
initial distribution of the vorticity fields as 

(17) 

and intend to follow the evolution of d(x ,  t). We note that the fourth term in (10) can 
be decomposed into (51-V) u = -51 x w+ V(51.u), in which only the latter part is 
responsible for generating far-field vorticity. Therefore we introduce the function 
Y(x ,  t ) ,  chosen so that away from the disturbed region Y ( x ,  t )  = Sz-u', and by using 
(12) or (13), its asymptotic behaviour is given by 

0 I (x, t = to) = oo(x) and d ' ( x ,  t = to)  = 0, 

+ higher-order terms, 

wherep is the fluid impulse corresponding to a', i.e. 

x x d(x)dV.  p = - 2 '1 
The corresponding system of vorticity equations is given by 

a01 -+ (U .  V) 0 ' - ( 0 I .  V) u- (51. V) U1 + (U'V) 0- (0. V) u+ VY = 0, 
at 

-+ (U. V) 0 ' I -  ( 0 1 1 .  V) U-(s1. V) U1'-VY = 0, 
at 

for which the sum of the two equations, together with the sum of the initial conditions 
given in (17), yields the original problem. It should be noted that without loss of 
generality, 0'' can be chosen arbitrarily, provided that V .0"  = 0. 

In order to ensure this condition at all times (note that at t = to this condition is 
satisfied, (17)), we apply the operator (V-) to (20) and (21), and use (15) and (7)T to 
obtain that AY(x, t)  = 0 everywhere. Thus, Y must be a piecewise-continuous 
harmonic function which asymptotically vanishes at a rate given by (18). We subdivide 
all space into two regions, inside and outside a spherical domain of radius R 2 6, 
enclosing the disturbance. We construct Y as being composed of two functions, Yo and 
Y6, corresponding to 1x1 greater than and smaller than R 2 6, respectively. The outer 
function, Yo, is set to be equal to the leading term of (18), whereas the inner function, 
Y6, is determined by solving the Neumann problem for which AYi(x,  t )  = 0 and 
n.a!Pi/an = n.aYo/an on the spherical boundary 1x1 = R, where n is the unit vector 
normal to boundary surface. Accordingly, the expression for Y6 is given by 

1 

y. = ~ I(51.p) 1x12- 3(51.x) (p. x)]. 
a 8nR5 

Since VTcancels the leading terms of the vorticity generated via the fourth term in (20) 
the asymptotic behaviour of 0' is given by 

t The approximation (7) is necessary only because the fourth term in (4) has been dropped. 
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Consequently, the fluid impulse integral (19) is absolutely convergent and the resultant 
integral is not dependent on the way in which the volume of the integration is allowed 
to tend to infinity. For convenience we use a spherical volume with a radius R, +oo so 
that the time evolution o f p  can be evaluated from 

Substitution of (20) into (24) yields 

- dP = -f lim 1 xx[(u .v)W'- (W' .v )u- (a .v )U'  
dt R,+m Ixl<R, 

+ (u* V) w - (0.V) u + VW d V. (25) 

Before proceeding with the analysis, the role of the artificially superposed potential 
vorticity, V Y(x ,  t),  in the evolution of the concentrated vorticity field should be further 
clarified. -As is shown in Appendix A, the fluid impulse integral of any potential 
vorticity field is identically zero, provided the integral is taken over a spherical domain. 
As such, the artificial superposed potential vorticity field V Y(x ,  t )  has no direct impact 
on the impulse evolution of the concentrated vorticity ~ ' ( x ,  t), i.e. 

n 

x x VY(x, t)dV = 0. J IxlGRi 

On the other hand, the potential vorticity, VY(x , t ) ,  is the only driving force 
associated with the vorticity field, ~ " ( x ,  t), which initially is zero everywhere. Since 
U/i(x, t )  is a harmonic function, it attains its maximum on the boundary R > 6. 
Consequently, using (22), the magnitude of the generated vorticity is estimated to be 
lw"l - IpI/R4 for times of O(l/lal),. However, since within the domain 1x1 < R, lines of 
constant V Y  are at most linear with x (see (22)), they cannot be enclosed within the 
disturbed region and therefore this field of vorticity cannot be associated with the 
concentrated vorticity region, which we intend to follow. Moreover, based on 
experimental observations, in most cases the concentrated vorticity is confined within 
a small filament having a hairpin or horseshoe shape. Their length is relatively small, 
of O(S), whereas their typical cross-section diameter is of order 8, 4 S. Therefore, the 
magnitude of the fluid impulse in this case is lpl = O(10')S26~). Thus, the ratio lo"l/Io'l 
within the region 1x1 < R is at most proportional to &:/az. 

We now return to the analysis. The detailed evaluation of the integrals on the right- 
hand side of (25) is given in Appendix A. Accordingly, the time evolution of the fluid 
impulse, written in a vector form, is given by the following equation: 

in which the vector U corresponds only to the leading term of (6). Equivalently, by 
using the relation a = V x U, one can obtain 

- dP = -;v(p. U ) - g p V )  u, 
dt 

where the derivatives of U are to be evaluated at x = 0. 
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Finally, it should be noted that although viscosity plays a crucial role in the 
generation of the initial localized disturbance, it plays no role in equation (27) which 
describes the evolution of the fluid impulse. In fact, if one includes the viscosity term, 
v A o  in (20), its corresponding additional integral in (25) is zero since it may be 
transformed to surface integrals, which vanish in view of the asymptotic behaviour of 
the vorticity (101 - I x I - ~ )  far from the origin. 

3. Application to two representative examples 
3.1. Application to plane parallel shear Bows and boundary layers 

For a parallel plane shear flow the external velocity field is given by U = ( U  b), 0, 0), 
for which a right-handed coordinate system is used with x = (x, y, z) ,  where the vector 
entries are the downstream, vertical (wall-normal) and spanwise directions, re- 
spectively. This external field can also be regarded as a very good approximation 
for a high Reynolds number two-dimensional boundary layer. For such cases the 
impulse vector equation (28) is reduced to 

(29 a-c) 

where p = (pz,py,pz). The general solution of (29) is 

Pz = PZ(O)? (30 c> 

where px(0), py(0) and p,(O) are the initial fluid impulse components at t = to. The 
solution (30) implies that any inviscid two-dimensional plane shear flow is unstable to 
a three-dimensional localized disturbance. 

For times much greater than (dU/dy)-l, the exponentially growing terms in 
(30) become dominant and consequently the solution for the fluid impulse can be 
approximated as 

where the constant C,, which is determined from the initial vorticity distribution, is 
positive for positive values of the vertical component of the fluid impulse. According 
to the solution (31), p is aligned to the flow direction at 135". Since the fluid impulse 
vector is perpendicular to the plane of any vortex dipole such as the hairpin one, the 
latter is predicted to be inclined to the flow direction at an angle of 45", regardless of 
its initial vorticity distribution, o,,(x). Within the limits of experimental error, this is 
exactly the characteristic angle observed by Head & Bandyopadhyay (1981) in a 
turbulent boundary layer and by Acarlar & Smith (1987a,b) in a laminar boundary 
layer. To the best of our knowledge, the only previous analytical attempt to predict the 
45" inclination angle, was done by Theoderson in 1952. According to his arguments, 
the material derivative of o-o is proportional to the stretching term ox o,(aU/ay), and 
the latter will be maximum when the component of the vorticity vector is inclined at 45" 
to the main flow direction, in a plane normal to the transverse axis. However, this is 
not a satisfactory explanation since, as was pointed by Head & Bandyopadhyay (1981), 

p =-p Y = -  co exp ( W l d Y )  4,  (31) 
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the question as to why the hairpin vortices should set themselves at the angle which 
makes the contribution of the stretching term maximum still remains unanswered. 

The set of two linear coupled equations (29a,b) describes a simple feedback 
mechanism in which the growth of one component of the fluid impulse enhances the 
growth of the other and vice versa. The dynamics of the localized vorticity disturbance 
associated with these two coupled equations can be explained, in view of equation (25), 
as follows: the liftup of the disturbance in the vertical direction stretches the external 
spanwise vorticity field and generates a disturbed vorticity component in the vertical 
direction, which is equivalent to a further growth of the streamwise component of the 
fluid impulse. The direct effect of the external shear flow is to rotate the disturbed 
vortex back towards the wall and thereby to amplify the streamwise vorticity 
component as well as the vertical component of the fluid impulse. The new streamwise 
vorticity component generated induces an additional vertical velocity which further 
enhances the liftup effect and closes the feedback loop. Hence, the inclination of the 
hairpin vortices at 45" is a result of two conflicting effects: the liftup effect caused by 
the vertical induced motion on the one hand and the stretching and tilting due to the 
external shear on the other. 

The above scenario is similar but not equivalent to the one suggested by Head & 
Bandyopadhyay (1981) and elaborated by Acarlar & Smith (1987~). According to 
them, the shear effect is opposed by the induced velocity that each leg of the hairpin 
imposes upon the other. We on the other hand emphasize the importance of the 
integrated vertical liftup effect, according to which a major part of the horizontal 
momentum is retained when a low-speed fluid particle is vertically displaced. This 
process is accompanied by the generation of vertical vorticity in the disturbed vortical 
region and its surroundings. The success of this analysis in predicting the inclination 
angle of the hairpin vortices is clearly due to the use of the fluid impulse which accounts 
for the integral character of the liftup effect. Universality expresses itself in the 45" 
angle of inclination of the hairpin vortices regardless of the details of the flow 
(magnitude and shape of the external velocity shear, initial distribution of the disturbed 
vorticity and Reynolds number). 

Since nonlinearity is included in the analysis, the growth of the fluid impulse in 
parallel shear flows is moderated only by the growth of the disturbance geometrical 
scale which invalidates the assumption that & / A  4 1. If one were to include the next 
higher-order terms in the Taylor series expansions (6) and (7) then the right-hand side 
of (Al), which describes the time evolution of the fluid impulse in tensor notation, 
would include terms like 

x ,  x j  d V. 
€ i j k  ax,ax, 

The asymptotic forms of these terms require the consideration of additional terms in 
(13) and (18) to ensure that these integrals are absolutely convergent. For a general 
initial vorticity distribution, these integrals cannot be evaluated analytically, but it is 
a straightforward procedure to estimate them to be O(&/A) smaller than the leading 
terms. 

3.2. Application to the Taylor-CouetteJEow 
In order to facilitate a careful examination of the model we developed a new instability 
criterion, associated with finite-amplitude three-dimensional localized disturbances, 
for the relatively simple Taylor-Couette flow, which, however, has some additional 
dynamical effects owing to rotation. 
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3.2.1. Theoretical considerations 
The stability of external stationary circular flows of an incompressible fluid between 

two infinite long rotating coaxial cylinders to localized disturbances is considered here. 
The radii of the inner and outer cylinders are Ri and R,, respectively, and 
Qi and Q, denote the angular velocity of rotation about the axis of the two cylinders. 
In cylindrical polar coordinates r ,  $, z ,  the external velocity field is given by U = 

( ur, u,, u,) = (0, V(r), 01, where 
V(r) = Ar + B / r ,  (32) 

for which the constants A and B are 

Q,R:-Q,R:  (52, - Q,) R: R: A =  and B =  
R:- Rf Ri- Rt (33) 

The corresponding external vorticity field is 52 = V x U = (Qr,  Q,, Q,) = (0, 0, Q), 
where Q = 2(Q, Ri - 52, R:)/(R: - R:). 

We examine the possibility of the external flow being subjected to a three- 
dimensional localized disturbance, which is positioned at a radial distance r = rd 
between the two cylinders so that Ri < rd < R,. In order to follow the disturbed region, 
we change from the laboratory frame to a frame attached to the disturbance and 
rotating with it, at an angular velocity 52, = V(rd)/rd. In the new rotating frame, the 
external flow variables are denoted by a tilde. Accordingly, the expressions for the 
external velocity and vorticity are 

0 = (0, V -  0, r ,  0) and fi = (0, 0, Q - 2Q,), (34) 

whereas the vorticity equation (10) is given by 

where the last term represents the Coriolis force which occurs when the fluid has a 
motion relative to the rotating coordinates, and 52, = (O,O, Q,). 

In order to obtain the time evolution of the fluid impulse of the disturbance we 
follow the same procedure described in 92. In fact one can skip all the details and 
substitute 0 and f i+20d  instead of U and 52 in (27), respectively, to obtain 

dp - --- 
dt 

where the external flow variables are evaluated at rd. Substituting (34) into (36) yields 
the following system of linear equations : 

dpz - 0, -- 
" dt 

(3 7 a-c) 

for which the eigenvalues {A i }b ,  can be found from the characteristic equation 

A i [ A : + A ( A + 2 g ) ]  = 0. 
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Hence, the flow under investigation is stable with respect to three-dimensional localized 
disturbances only if the real part of Ai is not positive. Therefore, for stability we require 
that 

or 
2(Qi - 52,) Rt Rt 

(52, R; - Oi Ri) + 1 2 0 ,  
r: 

where (33) is substituted into (39). 
A complete stability analysis is given in Appendix B. A detailed comparison between 

the theoretical results of Appendix B and experiments requires a sophisticated flow- 
visualization technique for a Taylor-Couette apparatus where both cylinders can be 
rotated independently. This experimental facility is under construction at the moment 
and thus only experimental results corresponding to the case in which the inner 
cylinder is fixed, will be presented here. Under these conditions, the flow is known to 
be stable to any axisymmetrical disturbance as predicted by the Rayleigh inviscid 
criterion. The Landau & Lifshitz (1959) generalization of the Rayleigh criterion 
predicts stability of this flow to any three-dimensional disturbance. This result stands 
in contradiction to the present calculations. According to these, if 52, is set to zero in 
(40), one obtains that stability occurs if 

rd 2 d 2  Ri. (41) 

For rd = Ri, as an example, the above inequality implies that the flow is unstable to any 
three-dimensional localized disturbance. The source of the disagreement between the 
two criteria is that the motion induced by the disturbance as it is displaced radially is 
considered as an essential part of the feedback mechanism described above, whereas it 
was completely ignored in the calculation of Landau & Lifshitz (1959). 

3.2.2. Preliminary experimental results 
A Taylor-Couette apparatus consisting of a stationary circular cylinder inside a 

concentrically rotating outer cylinder, and using water as a working fluid, was 
constructed for this investigation. Hairpin vortices were generated at the inner cylinder 
using an injection-suction technique with coloured water. Pictures of the flow were 
taken with a Hi 8 mm video camera. A schematic drawing of the side view assembly 
of the Taylor-Couette experiment is shown in figure 1. 

The inner cylinder consisted of a stainless steel tube, 850 mm long, having an outer 
diameter of 101 fO.l mm and a thickness of 5 mm. This cylinder was kept fixed in 
place using a break. The outer cylinder was a Plexiglas tube, 800 mm long, with an 
inner diameter of 190 f 1 mm and a thickness of 10 mm. These dimensions were chosen 
so that an initial disturbed region, having a typical dimension of 5 mm, could be 
considered small in comparison with the spatial scale of the external flow field. The 
diameters of the two cylinders need not be precisely controlled, since only local effects 
were investigated. The cylinders were supported at both ends by ball bearings. The 
rotation of the outer cylinder was driven by a controlled variable-speed electric motor, 
which was connected to the bottom ball bearing through a worm gear unit and a ‘V’  
belt. For the present investigation the outer cylinder was rotated at a constant angular 
velocity of 60 r.p.m. 

In order to facilitate the injection of dye, a horizontal plate was mounted on the top 
end of the inner cylinder. This plate served as a stand for a dye injection unit and a low- 
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FIGURE 1. Schematic drawing of the side-view assembly of the Taylor-Couette apparatus. 

vacuum pump which were placed on it. The injection unit consisted of a 2 1 pressurized 
reservoir filled with coloured water. The dye was injected normal to the cylinder wall 
through a small hole of diameter 0.8 mm. To assure that the results were independent 
of the hole location, several holes located at different heights of the cylinder were used 
alternately. The coloured water flowed slowly from the dye injection unit to one of the 
holes through a capillary, positioned inside the inner cylinder. The rate of the dye flow 
was monitored by a flow control valve. Two additional small holes of 2 mm in diameter 
were located 5 mm above and below the dye injection hole along the cylinder axis. 
These holes served for suction of water around the injection area. The holes were 
connected to the vacuum pump through two tubes, which ran inside the inner cylinder 
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FIGURE 2 FIGURE 3 

FIGURE 2. Time-sequence visualization (downstream view) of the hairpin vortex evolution. External 
flow is from left to right. The large black spot on the left corresponds to the region of the initial 
disturbance. 
FIGURE 3. Time-sequence visualization (upstream view) of the hairpin vortex evolution. External flow 
is from left to right. 

and passed through a flow control valve. By adjusting the ratio between the dye 
injection and the suction applied through the two side holes, a distinguishable initial 
localized vortex disturbance was generated, having a typical size of 5 mm. 

A time sequence of two side-view visualizations of hairpin vortices is presented in 
figure 2, wherein the direction of the external flow is from left to right 
(counterclockwise). A single hairpin vortex just after it was released from the dye 
injection region (the black spot upstream of it) is shown in figure 2(a). The growth of 
the vortex as it travels downstream and the birth of a second vortex are clearly evident 
in the bottom picture (figure 2b), which was taken a short time later. Moreover, the 
radial development of the vortex away from the sidewall of the inner cylinder can be 
seen from this figure. 

Another view of the vortex formation is given by the time sequence of end-view 
visualizations (looking upstream), displayed in figure 3. The black spot on the left side 
of the inner cylinder is the injection-suction region (the source of the three-dimensional 
disturbance). Slightly to the right there is a structure which is composed of two parts: 
the left part (which is darker) is the hairpin itself, while the longer loop extending to 
the right is its shadow. As before, the formation of a single hairpin vortex is observed 
just downstream of the dye injection region. Owing to the lighting angle, the vortex 
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itself appears to be much smaller than its shadow. The growth of the hairpin vortex at 
later times is shown in the next two pictures (figures 3 b and 3 c). 

The vortex structures observed in the present experiments are very similar to the 
ones found by Acarlar & Smith (1987a,b) and by Hagen & Kurosaka (1993) in a 
laminar boundary layer, even though the methods used in generating the hairpin 
vortices were not exactly the same. In their experiments, relatively long streamwise 
slots were used for fluid injection, whereas we used a combination of dye injection and 
suction through three small holes positioned at the same streamwise location. This 
agrees with our conclusion that the growth of the localized vortical disturbances is 
independent of their initial distributions. Furthermore, the evolution of the hairpin 
vortices, and in particular their radial growth, strongly support the new instability 
criteria described above. 

4. Summary and conclusions 
A model which uses the fluid impulse as an integral characteristic of localized 

disturbances embedded in external shear flows has been developed. According to its 
predictions, such initial disturbances, in plane shear flows, are amplified exponentially 
and inclined to the main flow direction at 45", regardless of their initial vorticity 
distribution. These results are in full agreement with previous experimental 
observations. The instability mechanism is an inviscid one and consists of two 
conflicting effects: the first is the generation of vertical vorticity caused by the vertical 
displacement of the vortex and its surroundings, whereas the second effect is the 
generation of horizontal vorticity due to the rotation of the disturbed vortex by the 
external shear flow. 

Knowledge of the amplitude of the initial disturbance is not a prerequisite of the 
model, since the contribution of nonlinear effects to the evolution of the fluid impulse 
integral is zero. This does not mean that nonlinearity is not important. On the 
contrary, we think that strong and local nonlinear effects are essential for forming 
vortical structures such as the hairpin ones. The present analysis does not account for 
such local nonlinear effects and therefore cannot explain why hairpin or horseshoe 
shapes are formed. However, the subdivision used in the analysis of the vorticity field 
into a bounded near field, a', and far-field vorticity tails, wII, induced by the integrated 
liftup effect, relies upon the existence of such vortical configurations. 

The theoretical approach taken in this investigation is of a general nature and can 
be applied to various shear flows. Its application to Taylor-Couette flow, which has 
some additional dynamical effects owing to rotation, reveals a new instability criterion 
associated with three-dimensional localized disturbances. The validity of this criterion 
is supported by present experimental results. According to these, hairpin structures 
similar to the ones observed in a laminar boundary layer were found for conditions 
under which the flow is predicted to be stable according to the Landau & Lifshitz 
criterion. 
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Appendix A 

(25). It is convenient to introduce a Cartesian tensor notation, i.e. 
The purpose of this appendix is to evaluate the integrals on the right-hand side of 

= lim (I, + I, + I3 + ZJ, 
R,+m 

where eijk is the alternating tensor and the usual summation convention is applied. 

take their limits as R,  +a. 
We shall evaluate each one of the integrals, I, - 14, for a finite value of R, and then 

The integral I, is given by 

In order to evaluate the integral of the first term in (A2), we first use integration by 
parts and then employ Gauss' divergence theorem and use the incompressible 
continuity equation for the external flow. Thus, 

n, x, U, w i  dS, (A 3) f U, w i  d V - ;eijk s IXl-Ri 1x1 G Ri 

a w l  
-16.. x U A d V =  ;ciikSti 

2 t j k [  IxlGR, * 
where n is a unit vector normal to the sphere surface. 

of the Taylor series expansion (6) to approximate the external velocity so that 
In accordance with the order of magnitude estimations (see $2), we use the first term 

(A 4) 
By permutating the indexesj and k in the first term of the volumetric integral in (A4) 
we obtain 

which in the limit R, +a, where the asymptotic expression (23) for 0' is valid, yields 
the neglect of the surface integral in (A 5). Consequently, 

In order to evaluate this integral, we rewrite the expression for the fluid impulse using 
tensor notation, i.e. 

(A 7) 
Multiplying the fluid impulse by the alternating tensor etZj and using the identity 
etzj etmn = S,, S,, - S,, S,,, where Sij is the Kronecker delta function, yields 

P - 1  t - 26tmn I x m  4 dV* 
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Substituting (A 8 )  into (A 6) and using once again the identity mentioned above, the 
final expression for I ,  can be written as 

R,+m 

The evaluation of I, follows a similar procedure. Accordingly, we use integration by 
parts and employ Gauss’ divergence theorem and Taylor series expansion to obtain 

~~dV=Z, ,+Z2, .  (A10) 

In order to calculate the first integral Izl, a similar expression to (13) is used to describe 
the asymptotic far-field behaviour of u’. Thus, 

s = h j k  QC(o) f n, xi u: dS - $cijk Q,(O) 
Ixl=Ri IxlGRi 

which in the limit R1+m is reduced to 

1 
R,+a, 8x 
lim I,, = ---c.. Q,(O) sin(0)dO[n,nj(pk-3p,n,nk)] .  (A 12) 

A straightforward calculation of (A 12) using the symmetry properties of the alternating 
tensor yields 

lim I,, = -;cijk Qj(0)pk.  (A 13) 
R,+CC 

It is convenient to write the second integral I,, as 

= -;cijk Qj(0) Jk, 
where Jk is given by 

J k = s  uf(x) d v. 
1x1 G Ri 

Using the relation (16), in tensor notation, and changing the order of integration yields 

The integral on the right is well known from potential theory; for example it 
represents the electrostatic field due to a sphere of radius R, uniformly filled with space 
charge of unit density. The result of this integral is 

(A 17) 
Ix’l < R, 
Ix’( > R,. 

Substitution of (A 17) into (A 16) yields 
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Taking the limit R, --+ co and using the asymptotic expression (23) for 02 we obtain that 
the second integral of (A 18) vanishes and consequently 

lim Jk = $pk, 
R,+m 

where the definition of fluid impulse (A7) was used. Using (A 19), the limit of Z,, as 
R1+m is given by 

lim I,, = -&, nj(O)pk, (A 20) 
R,+m 

which together with I,, results in 

The integral Z3, which is given by 

Z3 = kl cijkxi( 
x l 6 R ,  

represents the evolution of the fluid impulse due to the nonlinear self-induced motion 
of the disturbed field. This integral tends to zero as R1+co (Batchelor 1967). 

Finally the integral Z4 which represents the evolution of the fluid impulse due to the 
artificial superposed potential vorticity field is evaluated. Integration by parts and 
using Gauss' divergence theorem yields 

Using the properties of the alternating and symmetrical tensors eiik Sjk E 0, and 
ciik nk nj 3 0, it immediately follows that Z4 = 0. 

The substitution of (A9) and (A21) into (Al)  together with the results that 
limR,+m(Z3) = Z4 = 0 yields 

which in a vector form is given by 

dP - = -v(p. U)-$52(0) x p ,  
dt 

where it is understood that 

Xi. 
3 au(o) 

U ( X )  = c - 
i-l axj 

Appendix B 
The purpose of this Appendix is to analyse the criteria for stability of Taylor-Couette 

flow to a three-dimensional localized disturbance (40), with respect to its position rd 
and the non-dimensional parameters RJR,  and 52,/52,. We begin with the criterion 
obtained in $3, according to which the flow is stable if 

(52, R: - SZi R:) [SZ, Ri - 52, R: + 2(Oi - 52,) Ri R:/r:] > 0. (B 1) 
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Without loss of generality we set 52, > 0. For Qi < 0, expression (B 1) can be written 
as 

(B 2) (52, R: + lQil Ri) [a, RE + l52J R,2 - 2(152,1+ 52,) R: R i / r i ]  2 0, 

which is equivalent to 

Hence, the flow is unstable for rd < 1/2 R, and is stable for rd 2 4 2  Ri and 

52, R:(ri--2R:) 2 IQJRt(2Ri-ri). 

Thus, for a narrow-gap apparatus so that R,/R, < 1/2  the flow is always unstable 
when the two cylinders rotate in opposite directions. 

For Oi > 0, we first consider the case where 52, R: < 52, Rt. In this case we obtain 
that the flow is stable only if 

52, Rz((2RtIri) - 1) 2 52, Ri((2R:/r:) - 1). 

((2Rf/ri)- 1) < ((2R:/ri)- 1) 

(B 5 )  

(B 6)  

Since 52, R: is assumed to be less than Qi Rt and the relation 

holds, the inequality (B 5 )  cannot be satisfied. Hence, for this case the conditions for 
instability are the same as predicted by the Rayleigh criterion. 

Finally we consider the case where 52, R: > 52, Ri, which is in fact the Rayleigh 
inviscid criterion for stability of axisymmetric disturbances when both cylinders rotate 
in the same direction. For our model we obtain 

(B 7) 52, R:(2R: - r i )  < Qi R:(2Ri - r i ) .  
Equation (B7) is satisfied and thus the flow is stable provided the initial position of 
the localized disturbance rd 2 1/2  Ri. However, for rd < 1/2 Ri the flow becomes 
unstable if 

R: 2R,Z - r i  
R:2R2,-ri’ 

52, < a,-- 

provided the relation 52, Ri > 52, R: holds. The right-hand side of (B 8) attains a 
maximum value when rd = Ri. Thus, as the angular velocity of the inner cylinder is 
decreased below this maximum value, instability, which first occurs in the region 
adjacent to the inner cylinder, begins. 
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